
ISSN (Online) 2321-2004 
ISSN (Print) 2321-5526 

 
      INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN ELECTRICAL, ELECTRONICS, INSTRUMENTATION AND CONTROL ENGINEERING 

   Vol. 3, Issue 4, April 2015 
 

Copyright to IJIREEICE                                                       DOI  10.17148/IJIREEICE.2015.3428                                                             127 

Attacks on Elliptic Curve Cryptography Discrete 

Logarithm Problem (EC-DLP) 
 

Mrs.Santoshi Pote
1
, Mrs. Jayashree Katti

2
 

ENC, Usha Mittal Institute of Technology, Mumbai, India1 

Information Technology, Chinchwad College of Engineering, Pune, India2 
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I.  INTRODUCTION 

Introduced to cryptography in 1985, elliptic curves are 
quickly being adapted for cryptographic purposes. Elliptic 

curve cryptography is quickly becoming a leader in the 

industry, and is challenging other cryptosystems such as 

RSA and DSA to become the industrial standard; this is 

due to an increase in speed during implementation, the use 

of less memory, and smaller key sizes. Another advantage 

of such a cryptosystem lies in the difficulty of solving the 

Elliptic Curve Discrete Log Problem (ECDLP). If an 

elliptic curve is chosen with some care, the ECDLP is 

believed to be infeasible, even with today’s computational 

power. Using elliptic curves presents a great advantage in 

a few areas. For instance, compared to RSA 
cryptosystems, elliptic curve based systems require less 

memory; for example, a key size of 4096 bits for RSA 

gives the same level of security as 313 bits in an elliptic 

curve system . Also, using a PalmPilot, generating a 512-

bit RSA key takes around 3.4 minutes, while generating an 

equivalent 163-bit ECC-DSA key takes 0.597 seconds [87, 

159]. Immediately we begin to see the advantages of using 

elliptic curves, especially on small hand held devices with 

little computing power. It is clear that this now gives us 

the advantage of setting up  schemes that require smaller 

chip sizes, use less memory, require less resources to run, 
require less power consumption, etc; and can be placed in 

small electronic devices, such as smart cards and cell 

phones. Many elliptic curve cryptosystems take advantage 

of what is known as the ECDLP. Analogous to the 

Discrete Logarithm Problem (DLP) over a finite field F×p 

, the ECDLP has the following problem: given two points 

P and Q on an elliptic curve E defined over a field Fq, 

where q is prime or a prime power, if P = [m]Q for some 

m ϵ Z, determine m. Schemes and protocols such as the 

Deffie-Hellman key exchange, Massey-Omura encryption, 

El-Gamal public key encryption and El-Gamal digital 

signatures and even the Elliptic Curve Digital Signature 
Algorithm(ECDSA), all use the fact that attempting to 

solve the ECDLP is a difficult, if not intractable, problem. 

As mentioned although the ECDLP is thought to be an 

intractable problem, it has not stopped people attempting 

to attack such a cryptosystem. Various attacks have been  

 

devised, tested and analyzed by many leading 
mathematicians over the years, in attempts to find 

weaknesses in elliptic curve cryptosystems. Some have 

been partially successful, while others have not. The 

purpose of this paper is to provide a detailed examination 

of the leading attacks against the ECDLP, and to use the 

knowledge of these attacks in an attempt to generate 

cryptographically strong elliptic curves. 
 

II. ELLIPTIC CURVE CRYPTOGRAPHY 
An elliptic curve over the field is the set of all solutions  

(x,y) ϵ F2  to the equation 

y2 + a1xy + a3y = x3 + a2x
2 +a4x +a6                (1) 

 

where a1,a2,a3,a4,a6 ϵ F, with an extra symbolic "point at 

infinity" marked ∞. Using geometric properties of the 

"graph" of solutions, one can define an abelian group 

structure for the curve, with the point at infinity serving as 

the unit member of the group. Cryptographic systems 

usually use elliptic curves over prime fields Fp( for some 

large prime number ) or binary fields (F2
m  for some 

integer m ), since field arithmetic in these particular fields 

can be implemented very efficiently. In this paper we have 

focused on prime field curves. In curves over a prime 

field, the Weierstrass equation above can be expressed, 
using a variable change, as a much simpler equation of the 

form 

                 y2 = x3 +ax +b .                             (2) 

 
Fig. 1 Elliptic curves 
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An elliptic curve E gives us a set of points, we define a 

binary operation + on E.  
 

III.  SELECTION OF ELLIPTIC CURVES 
 NIST Curves  

The U.S National Institute of Standards and Technology 

(NIST) has endorsed ECC in its set of recommended 

algorithms, specifically Elliptic Curve Diffie-Hellman 

(ECDH) for key exchange and elliptic curve digital 
signature Algorithm (ECDSA) for digital signature. Nist 

recommended fifteen elliptic curves. Specifically, FIPS 

186-3 has ten recommended finite fields. The NIST 

recommendation contains a total of five prime curves and 

ten binary curves. The curves were ostensibly chosen for 

optimal security and implementation efficiency. 
 

IV.  SPECIAL FIELDS 
 The following are some classes of finite fields that have 

been proposed for commercial use in elliptic curve 

cryptography due to their potential performance 

advantages. 

1. Prime fields: These are finite fields of prime order. 

Prime fields have the advantage that their arithmetic 

can be efficiently implemented in software on 

machines which have a 32*32 bit multiply instruction. 

2. NIST prime fields: These are prime fields Fp where 

the prime p is a Mersenne prime or a Mersenne-like 

prime, e.g.. In particular, the finite fields Fp  have 
been standardized in NIST’s FIPS 186-2 . Such prime 

fields are advantageous over random prime fields 

because the modular reduction operation can be 

performed very efficiently . 

3. Binary fields: These are finite fields of order F(2m). 

Binary fields have the advantage that their arithmetic 

can be efficiently implemented in hardware.  

4. Composite binary fields: These are binary fields of 

order where m is a composite number. Because 

composite binary fields have non-trivial subfields, 

field arithmetic can be speed up by using lookup 
tables for performing subfield arithmetic. 

5. Optimal extension fields: These are finite fields of 

order where p is a 32-bit or 64-bit prime and m is a 

small integer. Optimal extension fields were 

introduced by Bailey and Paar because the arithmetic 

in such fields is particularly efficient on 32-bit and 

64-bit platforms. 
 

V.  ELLIPTIC CURVE ARITHMETIC 

Now, we consider the following example. Let the two 

elliptic curves be y2 = x3 − 4x and  y2 = x3 − 1 . The 
graphs are as follows: 

 
Fig. 2 Example of y2 = x3 − 4x 

 
Fig. 3 Example of y2 = x3 − 1 

 

GROUP LAW 

Let E be an elliptic curve defined over the field of integers 

K. There is a chord-and-tangent rule for performing 
operations on the points of E(K) to give the third point. 

The operations on the group are as  follows[1]. 

Point addition  

 
Fig.4 Point Addition 

 

The operation is the addition of two points on the curve to 

obtain a third point on the curve. Let P(x1,y1), Q(x2,y2) € 

EK(a, b) where P ≠ Q. Then P + Q = (x3,y3) where,  

x3 = λ
2 − x1 − x2                                        (3) 

  y3 = λ x1 − x3 − y1                                                 (4) 

Whereas λ is the slope of the line joining points P and Q, 

λ =
y1−y2

x1−x2
 P ≠ Q                                                           (5) 

Suppose P(x1,y1) € EK(a, b) then,  

P + (-P) = O∞                                                                                                (6) 

Where (–P) = (x1, -y1), and this property is called as point 

at infinity. 

 
Fig. 5 Point at Infinity 
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Point Doubling 

 
Fig. 5 Point Doubling 

 

Let P=(x1, y1) € EK(a, b) where P≠ -P then, 2P= (x3, y3) 

where,  

x3 = λ
2 − x1 − x2                            (7) 

y3 = λ x1 − x3 − y1                         (8) 

And λ is the slope of the line joining points P and  (-P), 

λ =
3𝑥1

2+𝑎

2𝑦1
                                       (9) 

 

Point Multiplication  

In an arithmetic, multiplying a number by a constant k 

means adding a number to itself k times. The situation here 
is same. Multiplying a point P on an elliptic curve by a 

constant k means adding the point P to itself k times. 

 

VI.  DISCRETE LOGARITHM PROBLEM 

One of the first published cryptosystems whose security 

depends on discrete logarithms being difficult to compute 

appears to be an authentication scheme. In many computer 

systems, users’ passwords are stored in a special file, 

which has the disadvantage that anyone who gets access to 

that file is able to freely impersonate any legitimate user. 

Therefore that file has to be specially protected by the 

operating system. It has been known for a long time  that 
one can eliminate the need for any secrecy by eliminating 

the storage of passwords themselves. Instead, one utilizes 

a function f that is hard to invert (i.e., such that given a y in 

the range of f, it is hard to find an x in  the domain of f 

such that f (x) = y) and creates a file containing pairs (i, f 

(pi ) ), where i denotes a user’s login name and pi the 

password of that user. This file can then be made public. 

The security of this scheme clearly depends on the 

function f being hard to invert. 

 

One early candidate for such a function was discrete 
exponentiation; a field GF(q) and a primitive element g ϵ 

GF(q) are chosen (and made public), and for x an integer, 

one defines f (x) = gx . 

 

The security of many cryptosystems depends on the 

intractability of the discrete logarithm problem. For 

instance one of the more famous public key 

cryptosystems, El-Gamal encryption, relies heavily on the 

intractability of this problem. The following is referred to 

as the DLP or even sometimes as the Generalized DLP. 

The security of ECC depends on the difficulty of Elliptic 

Curve Discrete Logarithm Problem. Let P and Q be two 

points on an elliptic curve such that kP = Q, where k is a 

scalar. Given P and Q, it is computationally infeasible to 

obtain k, if k is sufficiently large. k is the discrete 
logarithm of Q to the base P. Hence the main operation 

involved in ECC is point multiplication. i.e. multiplication 

of a scalar k with any point P on the curve to obtain 

another point Q on the curve.  

 

Attacks on the DLP can be divided into three main 

categories  

1. Algorithms that work in arbitrary groups, such as the 

exhaustive search and the Baby-Step Giant-Step 

algorithm, 

2. Algorithms that work in arbitrary groups with special 
conditions present in the group, like Pollard’s rho 

Method, and 

3. Algorithms that work only in specific groups, such as 

the Index Calculus. 

 

VII. ATTACKING THE DISCRETE 

LOGARITHM PROBLEM 

1. Index Calculus Algorithm 
It is the strongest family of algorithms for finding the 

discrete logarithms in a cyclic group. The theme is if we 

can find the discrete logarithms of some small and 
independent elements, then we should be able to determine 

logarithms of almost any element in the group, as most 

elements we can express in terms of the small independent 

elements whose logs are known[1]. 

 

Let p be a prime and let g be primitive root mod p , which 

means that g is a generator for the cyclic group 𝐹𝑃
𝑋 . In 

other words, every h≠ 0( 𝑚𝑜𝑑 𝑝)   can be written in the 

form h≡ 𝑔𝑘 for some integer k that is uniquely determined 
mod P-1. Let K = L(h) denote the discrete logarithm of h 

with respect to g and p ,so [1] 

         𝑔𝐿 ℎ   ≡ h  ( mod p)                               (10) 

Suppose we have  ℎ1 and ℎ2. Then  

 

𝑔𝐿 ℎ1ℎ2   ≡ ℎ1  ℎ2  ( mod p)≡ 𝑔𝐿(ℎ1+ℎ2)  (mod P) Which 

implies that  

 L(ℎ1ℎ2) ≡ L(ℎ1 ) + L(ℎ2) mod (P-1)          (11)  

Therefore L changes multiplication into addition , just like 

the classical logarithm. 
The expected running time of the indux calculus is 

approximately a constant times exp  2𝑙𝑛𝑝𝑙𝑛𝑙𝑛𝑝,  which 

means that it is a subexponential algorithm.    

    

2. Baby step Giant step Algorithm 

In group theory, a branch of mathematics, the baby-step 

giant-step is a meet-in-the-middle algorithm computing 
the discrete logarithm. The discrete log problem is of 

fundamental importance to the area of public key 

cryptography. Many of the most commonly used 

cryptography systems are based on the assumption that the 

discrete log is extremely difficult to compute; the more 

difficult it is, the more security it provides a data transfer. 

One way to increase the difficulty of the discrete log 
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problem is to base the cryptosystem on a larger group. 

This method was developed by D. Shanks requires √ N 

steps and √ N storage. The algorithm is based on a space-

time trade off. It is a fairly simple modification of trial 

multiplication, the naive method of finding discrete 
logarithms. This attack uses a combination of 

computational power and memory storage to solve the 

DLP. Let G be a cyclic group with generator α. Suppose 

that α has order n  and set m = [√ n].  

 

Observe that if β = αx, then using the euclidean algorithm 

we can write x as follows: x = im + j, where 0 ≤ i, j < m. 

Thus we have that  β = αx = αim+j = αim αj , which 

implies that β(α−m )i = αj . To compute the discrete 

logarithm, we begin by computing and storing the values 

(j, αj ) for 0 ≤ j ≤ m. We then compute β(α−m ) and raise 
that to the exponent i for 0 ≤ i ≤ m − 1 and check  these 

values against the stored values of αj to find a match. 

When a match is found, we have solved the DLP and we 

have x = im + j as required.  

 

The drawbacks of this algorithm lie in the computation 

and formulation of the table of pairs (j, αj ). At each stage 

we are required to compute a power of α and look in the 

table to see if it returns a match. If this is successful then 

the DLP has been solved. Unfortunately, one has to store 

around O( √ n) group elements, perform  around O( √ n) 
multiplications to find the correct power of α, and in turn 

perform  O( √ n) table look-ups [62]. As a consequence 

this algorithm has an expected running time of O(√  n), 

which makes it impractical for cryptographic purposes.  

Procedure:- 

1. Fix an integer m> √ N     and compute mP 

2. Make and store a list of iP for 0≤i<m 

3. Compute the points Q-jmP for j=0,1……..m-1 until one 

matches an element from the stored list 

4. If iP=Q-jmp, we have Q=kP with k=i+jm (mod N) 

 

3. Pollards Rho Algorithm 
This algorithm has a similar running time to the Baby-Step 

Giant-Step method above yet requires less memory, an 

immediate advantage. Let G be a cyclic group of order n, 

where n is prime. G is then partitioned into three subsets 

of roughly equal size, call these sets S1, S2 and S3. We 

then de ne a sequence of group elements, xi, as follows: x0 

= 1and 

 
This in turn defines two sequences of integers ai and bi. 
The sequences ai and bi are defined as follows: set a0 = 0 = 

b0andfori > 0; 

 

 

 

We then begin with a pair (x1, x2) and iteratively compute 

pairs (Xi, X2i) until we nd a pair of group elements such 

that Xi =  X2i for some i. When such a pair is found we 

then have the following relation: 

 

 

 
Thus obtain a solution for  

 
 

4.  Pohlig Hellman Algorithm 

The algorithm was first discovered by Roland Silver, but 

first published by Stephen Pohlig and Martin Hellman 

(Independent of Silver). Thus it is sometimes called as 

Silver – Pohlig Hellman Algorithm. It is a special purpose 

algorithm used for computing discrete logarithms in a 

multiplicative group whose order is a smooth integer. 
 

The Pohlig Hellman method: 

P, Q are elements in a group G and we want to find an 

integer k with Q=kP. We also know the order N of P and 

we know the prime factorization  

                N =  𝑞𝑖
𝑒 𝑖

𝑖  

 

The idea of Pohlig Hellman is to find k (mod 𝑞𝑖
𝑒 𝑖) for each 

i , then use the Chinese Remainder theorem to combine 
these and obtain k (mod N). 

 

Let q be a prime, and let 𝑞𝑒  be the exact power of q 

dividing N. Write k in its base q expansion as  

 

k =k0 + k1 q + k2 q
2
 + ….. 

 
with 0 ≤ ki < q. We will evaluate k (mod qe) by 

successively determining k0 , k1 , k2 , .... , ke-1 . 
 

The procedure is as follows[1]: 

1. Compute T = {j ( 
𝑁

𝑞
.P)  0 ≤ j ≤ q-1 

2. Compute
 𝑁

𝑞
 Q . This will be an element  of 

𝑘0   
𝑁

𝑞
. P    of  T. 

3. If e = 1, stop. Otherwise, continue. 

4. Let Q1 = Q – k0P. 

5. Compute 𝑁
𝑞2Q . This will be an element  of  

𝑘1   
𝑁

𝑞
. P    of  T    

6. if e=2 stop otherwise continue.Suppose we have 

computed k0, k1, .... , kr-1, and Q1, .... , Qr-1. 

7. Let Qr = Qr-1 – kr-1q
r-1P. 

8. Determine kr such that 
𝑁

𝑞𝑟+1    .𝑄𝑟  = 𝐾𝑟  (
𝑁

𝑞
 P) 

9. If r = e -1 , stop. Otherwise, return to step (7). 
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Then  K≡ 𝑘0 + 𝑘1𝑞 … . + 𝑘𝑒−1𝑞𝑒−1    (mod 𝑞𝑒 ) Therefore 

we find 𝑘1 .  similarly, the method produces 𝑘2  , 𝑘3 ,….. 
We have to stop after  r = e-1 

 

VIII.  CONCLUSION 

The cryptographic strength of elliptic curve encryption lies 

in the difficulty for a cryptanalyst to determine the secret 

random number k from kP and P itself. The following 

algorithm implemented in System for Algebra and Geometry 

Experimentation (SAGE) software and  verify the expected 

time of the attacks on DLP. 
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